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Abstract
In a paper by M Kac (1966 Am. Math. Mon. 73 1–23), Kac asked his
famous question ‘Can one hear the shape of a drum?’, which was answered
negatively in Gordon et al (1992 Invent. Math. 110 1–22) by construction of
planar isospectral pairs. In Buser et al (1994 Int. Math. Res. Not. 9), it
is observed that all operator groups associated with the known counter
examples are isomorphic to one of PSL3(2), PSL3(3), PSL4(2) and PSL3(4).
We show that if (D1,D2) is a pair of non-congruent planar isospectral domains
constructed from unfolding a polygonal base-tile and with associated operator
group PSLn(q), then (n, q) belongs to this very restricted list.

PACS numbers: 02.70.Hm, 03.65.Nk, 03.65.Ge, 05.45.−a

1. Introduction

A celebrated question of M Kac [7] asks whether simply connected domains in R
2 for which

the sets {λn ‖ n ∈ N} of solutions (eigenvalues) of the stationary Schrödinger equation

(� + λ)� = 0 with �|Boundary = 0

coincide, are necessarily congruent.
Counter examples were constructed to the analogous question on Riemannian manifolds

(cf R Brooks [1]), but for Euclidian domains the question appeared to be much harder.
C Gordon, D Webb and S Wolpert constructed a pair of simply connected non-
isometric Euclidian isospectral domains—also called ‘planar isospectral pairs’ or ‘isospectral
billiards’—in [5]. Other examples were found later; see for instance the paper by P Buser, J
Conway, P Doyle and K-D Semmler [2], which contains all known planar examples constructed
from unfolding a base-tile with three sides. There, in table 1 of op. cit., it is shown that

the operator groups of these known examples are all isomorphic to the classical group
PSLn(q), where (n, q) ∈ {(3, 2), (3, 3), (4, 2), (3, 4)}.
In this letter, we show, rather unexpectedly, that

1 The author is a postdoctoral fellow of the Fund for Scientific Research—Flanders (Belgium).
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if (D1,D2) is a pair of non-congruent planar isospectral domains constructed
from unfolding any polygonal base-tile and with associated operator group
PSLn(q), n � 2, then (n, q) belongs to the very restricted list {(3, 2), (3, 3), (4, 2)

and (3, 4)} (main result).

For more details on the theory surrounding Kac’s question, see [4].
In the papers [3, 8, 9], the authors studied an abstraction of certain properties of sets of

involutions of projective spaces over finite fields, which arise naturally in the construction
theory of isospectral billiards—see the following section for formal details.

The essential idea of the present letter is that if we assume that the associated operator
groups are projective special linear groups in any dimension n, n � 2, the situation which we
want to consider can be reduced to those handled in [3, 8, 9].

In [3, 8, 9], the reason for studying these sets of involutions is that there could arise certain
data which yield new counter examples to Kac’s question by the tiling method.

Here, our viewpoint is entirely different; we want to show, using [3, 8, 9], that in
fact only very few counter examples by the tiling method arise when the operator group is
PSLn(q), n � 2.

2. Proof of the main result

For a pair of isospectral billiards on N copies of a tile with r sides, one needs r involutions acting
on a set of N letters, with the property that the graph � = �(V,E), where the vertex set V is the
set of N letters (tiles), and two vertices are joined by an edge of E if the corresponding letters
are interchanged by at least one of the involutions, has no closed circuits and is connected.
For any involution the number of edges is (N − s)/2, with s the number of fixed points of the
involution. The total number of edges must equal N − 1, and the group of transformations
generated by the involutions must act transitively on the set of N points. We will call this
group the ‘operator group’ of the billiard.

Now suppose that (D1,D2) is a pair of non-congruent planar isospectral domains
constructed from unfolding an �-gon, � � 3, N < ∞ times as just described. Since the Di are
constructed by unfolding an �-gon, we can associate � involutions θ

(j)

i to Di, j = 1, 2, . . . , �

and i = 1, 2. Define the operator groups

Gi = 〈
θ

(j)

i

〉
.

Now suppose that

G1 ∼= PSLn(q) ∼= G2,

with q a prime power and n � 2 a natural number.
The natural geometry on which PSLn(q) acts (faithfully) is the (n − 1)-dimensional

projective space PG(n − 1, q) over the finite field GF(q) [6]. It should be mentioned that
PSLn(q) acts transitively on the points of PG(n − 1, q). So we can see the involutions θ

(j)

i

for fixed i ∈ {1, 2} as automorphisms of PG(n − 1, q) that generate PSLn(q).
This means that for fixed i ∈ {1, 2} the triple

(
PG(n − 1, q),

{
θ

(j)

i

}
, �

)

yields ‘generalized projective isospectral data’ in the sense of [9]2.
2 This is a triple (P, {θ(i)}, r), where P is a finite projective space of dimension at least 2, and {θ(i)} a set of r
nontrivial involutory automorphisms of P, satisfying

r(|P|) −
r∑

j=1

Fix(θ(j)) = 2(|P| − 1), (1)

for some natural number r � 3.
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These data were completely classified in [9], mentioning that in [3] the planar case was
handled for involutions with the same number of fixed points, and in [8] the general case for
involutions fixing the same number of points.

Theorem 2.1 ([9]). Let P = PG(l, q) be the l-dimensional projective space over the finite field
GF(q), l � 2, and suppose there exist generalized projective isospectral data (P, {θ(i)}, r)
which yield isospectral billiards. Then either l = 2, the θ(i) fix the same number of points of
P, and the solutions are as described in [3], or l = 3, r = 3 and q = 2, and again the
examples can be found in [3].

This theorem implies that (n, q) is contained in {(3, 2), (3, 3), (4, 2), (3, 4)} if n � 3.
Now suppose that n = 2. We have to solve the equation

�|PG(1, q)| −
�∑

j=1

Fix
(
θ

(j)

i

) = 2(|PG(1, q)| − 1),

for fixed i ∈ {1, 2}, where Fix
(
θ

(j)

i

)
is the number of fixed points in PG(1, q) of θ

(j)

i . Since
|PG(1, q)| = q + 1 and since a nontrivial element of PSL2(q) fixes at most two points of
PG(1, q), an easy calculation leads to a contradiction if q � 3.

Now let q = 2. Then PSL2(2) contains precisely three involutions, and they each fix
precisely one point of PG(1, 2). A numerical contradiction follows.
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